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Abstract Higher order finite element method requires valid
curved meshes in 3D domains to achieve the solution accu-
racy. When applying adaptive higher order finite elements in
large-scale simulations, complexities that arise include mov-
ing the curved mesh adaptation along with the critical do-
mains to achieve computational efficiency. This paper presents
a procedure which combines Bézier mesh curving and size
driven mesh adaptation technologies to address those require-
ments. Curved local mesh modification operations are ap-
plied to eliminate invalid curved elements and mesh size
field is properly controlled to generate valid curved meshes
which have been successfully used by Standford Linear Ac-
celerator (SLAC) to simulate the short-range wakefields in
particle accelerators. The analysis results for a 8-cavity cry-
omodule wakefield demonstrate that valid curvilinear meshes
not only make the time domain simulations more reliable but
also improve the computational efficiency up to 30%. The
application of moving curved mesh adaptation to an accel-
erator cavity coupler shows a tenfold reduction in execution
time and memory usage without loss in accuracy comparing
to uniformly refined meshes.

Keywords Mesh adaptation· Bézier mesh curving· Higher
order finite elements

1 Introduction

Higher order finite elements [1], which are well known for
faster rates of convergence in terms of computational ef-
ficiency, can provide an effective approach for large-scale
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simulations. When applying higher order finite elements to
three-dimensional curved domains, the elements must be prop-
erly curved to maintain the rate of convergence [2]. The
common approach to construct such curved meshes is to
apply a straight-sided mesh generation procedure [3,4] and
then curve the mesh edges and faces on the curved domain
boundaries to proper orders. This approach is able to take ad-
vantage of the conventional unstructured mesh generators to
deal with the complexity of model geometry. However, the
resulting meshes often become invalid because curving the
straight-sided mesh entities to model boundaries can lead to
negative determinant of Jacobian in the closures of curved
elements. Effective and efficient correction of those invalid
elements is critical in curvilinear mesh construction and for
its usage with higher order finite elements.

Stanford Linear Accelerator Center (SLAC),supported
by DOE SciDAC program, have successfully taken advan-
tage of higher order finite elements to perform electromag-
netic simulations for the design of the next generation lin-
ear accelerators, for example, short-range wakefield calcula-
tions [5–7]. Those simulations requires sufficient refinement
around the beam to resolve high frequency while the rest of
the domain can have a large mesh size. This refinement re-
gion must move along with the beam through the curved do-
mains in the time dependent simulations to achieve accept-
able computational efficiency. Considering that the domains
are curved and higher order finite elements are used, the re-
fined meshes must also be curved to provide a sufficiently
higher order geometric approximation to effectively achieve
the desired level of accuracy. The uniform refinement us-
ing smaller mesh size throughout the entire domain can pro-
duce over-refined meshes outside of the critical beam do-
mains while larger mesh size can generate too coarse meshes
which often become invalid during the curving procedure.
As an example, Figure 1 shows a beam region (300 micron)
in a ILC coupler short-range wakefield simulation whose
beam pipe radius is 39mm. The mesh will have over 100
million tetrahedral elements if the beam size is used to gen-
erate uniform refined mesh. Those lead either to unfeasible
large problem size, inaccurate results, or possible failure of
the simulations.
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Fig. 1 Beam region in a ILC coupler short-range wakefield simulation

To enable such higher order finite elements in large-scale
simulations, a moving curved mesh adaptation procedure
that combines a general Bézier mesh curving [8,9] and size
driven mesh adaptation [10,11] is presented. The application
of curved mesh modification operations and properly size
control are essential to ensure the resulting curved meshes
are valid with least number of elements for the desired accu-
racy.

The outline of this paper is as follows. Section 2 de-
scribes a B́ezier mesh curving procedure to construct valid
curvilinear meshes for three-dimensional curved domains.
The procedure employs Bézier polynomial to represent the
higher order geometric shapes for curved mesh entities. The
extension of size driven mesh adaptation procedure to ac-
count for curved elements is discussed in Section 3. Analy-
sis results applied by SLAC for linear accelerator design are
shown in Section 4. Conclusions and future works are given
Section 5.

2 Mesh Curving

A flexible distributed mesh data structure [12] is employed
in this paper to support the moving curved mesh adaptation.
The mesh data structure applies a general topology and clas-
sification of the entities with respect to the geometric model
entity that the mesh entity is on [13].Md

i andGd
i are used

to describe the mesh and model topological entity of dimen-
siond, d = 0,1,2,3 represent mesh and model vertex, edge,
face, and region respectively.

The mesh approximation of the curved geometric do-
mains is maintained by assigning appropriate Bézier higher
order geometric shapes to mesh edges and faces on curved
domain boundaries. The topology-based Bézier mesh geom-
etry shape is constructed using Bernstein polynomials which
possess a number of advantageous properties including [14]:

– The Convex Hull Property - A B́ezier curve, surface, or
volume is contained in the convex hull formed by its con-
trol points.

– Computationally efficient algorithms for degree eleva-
tion and subdivision are available which can be used to
refine the shape’s convex hull as well as adaptively refine
the mesh’s shape.
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Fig. 2 Bézier control points for a curved mesh edge, face and region

Those properties are useful to form the validity check al-
gorithm for B́ezier higher order curved elements and to de-
termine local mesh modification operations to correct invalid
elements due to the curving of mesh entities to the model
boundaries. The resulting curved meshes can always guar-
antee that each element has positive determinant of Jacobian
in its closures.

2.1 Topology-based B́ezier Higher Order Shape
Representation

Bernstein polynomials provide an effective means to define
Bézier hierarchic higher order shapes for topological mesh
entities in their parametric coordinates. Aqth order B́ezier
mesh entity can be represented as [9],

x(ξ ) = ∑
|i|=q

B|i|(ξ )b|i|ξ
|i| (1)

whereB|i|ξ
|i| are the Bernstein polynomials defined in the

mesh entity parametric coordinate system as shown in Ta-
ble 1. Note that the independent parametric coordinates for

Table 1 ξ , |i|, B|i| andξ
|i|for topology mesh entity

ξ |i| B|i| ξ
|i|

Edge (ξ1,ξ2) |i| = i + j q!
i! j! ξ i

1ξ
j

2

Triangle (ξ1,ξ2,ξ3) |i| = i + j +k q!
i! j!k! ξ i

1ξ
j

2ξ k
3

Tetrahedron (ξ1,ξ2,ξ3,ξ4) |i| = i + j +k+ l q!
i! j!k!l ! ξ i

1ξ
j

2ξ k
3 ξ l

4

a topological mesh edge, face and tetrahedron should beξ1,
(ξ1,ξ2) and(ξ1,ξ2,ξ3) respectively. Therefore,ξ2 = 1−ξ1,
ξ3 = 1−ξ1−ξ2 andξ4 = 1−ξ1−ξ2−ξ3. b|i| are the control
points used to define the curved shapes of the Bèzier mesh
edges, faces and regions. Figure 2 shows the control points
for a quadratic curved mesh edge, triangle face and tetrahe-
dral region.

Given a straight-sided mesh and its associated geome-
try CAD model, the control points for those mesh entities
on the curved model edges/faces are determined based on
Bézier curve and surface interpolation method by evaluat-
ing the model geometry at a set of discrete parametric lo-
cations. Common approaches often use the uniformly dis-
tributed parametric points. However, alternative methods, such
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as chord length method or curvature-based procedure, will
be used to improve the geometric approximation [14]. For a
curved mesh with different shape representation method, the
control points are computed by converting the given shapes
to Bézeir form. For example, a Lagrange quadratic mesh
edge with three interpolating control pointsl1, l2 andl3 can
be converted to a B́ezier shape defined asx= b20ξ 2

1 +2b11ξ1(1−
ξ1) + b02(1− ξ1)2. The B́ezier control points can be com-
puted as follows,

x(ξ1 = 0) = b02 = l1
x(ξ1 = 1/2) = b20

4 + b11
2 + b02

4 = l2
x(ξ1 = 1) = b20 = l3

(2)

Therefore,b02 = l1, b20 = l3 andb11 = (4l2− (l1 + l3))/2.

2.2 Validity Check of B́ezier Higher Order Curved
Elements

When applying adaptive higher order finite element method
in which the approximation basis is often increased, the in-
tegration rules must be properly improved to ensure that
the numerical integration error does not become the domi-
nant error. The improvement of the integration rules requires
evaluating the determinant of Jacobian at new integration
locations. Without knowledge that the determinant of Jaco-
bian is positive throughout the element closure a-priori, the
curved elements must compute the determinant of Jacobian
at those new locations. In the case that negative determinant
of Jacobian occur, the curved elements become invalid and
must be corrected. To avoid the need to constantly recheck
the validity of a curved element, a general validity check al-
gorithm independent of the basis functions, the polynomial
orders, or the applied integration rules is desired. This pa-
per used the convex hull property of Bézier polynomials to
check the validity of curved elements which ensure the de-
terminant of Jacobian is always positive in the element clo-
sures [8].

Given aqth order B́ezier tetrahedron described in Eq.1,
the Jacobian matrix of the geometric mapping with respect
to the independent parametric coordinates(ξ1,ξ2,ξ3) is,

J =
[

∂x
∂ξ

]
=


∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

 (3)

wherex = (x1,x2,x3) Therefore, the determinant of the Ja-
cobianJ is,

det(J) = (
∂x
∂ξ1

× ∂x
∂ξ2

) · ( ∂x
∂ξ3

) (4)

where ∂x
∂ξi

are the three partial derivatives ofx which are
(q−1)th order B́ezier functions. Therefore, the resulting de-
terminant of Jacobian is a Bézier polynomial function with

order 3(q−1),

det(J) = ∑
|i|=r

C|i|c|i|ξ
|i| (5)

wherer = 3(q−1). C|i| andc|i| can be expressed using the
coefficientsB|i| andb|i| in Eq. 1. As an example, the quadratic
tetrahedral region shown in Figure 2 can be expressed as,

x = B2000b2000ξ
2
1 +B0200b0200ξ

2
2 +B0020b0020ξ

2
3 + (6)

B0002b0002ξ
2
4 +B1100b1100ξ1ξ2 +B1010b1010ξ1ξ3 +

B1001b1001ξ1ξ4 +B0110b0110ξ2ξ3 +
B0101b0101ξ2ξ4 +B0011b0011ξ3ξ4

Considering thatξ4 = 1−ξ1−ξ2−ξ3, B2000= B0200=
B0020 = B0002 = 1 and the rest coefficientsB′s equal to 2,
therefore,

∂x
∂ξ1

= 2{(b2000−b1001)︸ ︷︷ ︸
a1

ξ1 +(b1100−b0101)︸ ︷︷ ︸
b1

ξ2 (7)

+(b1010−b0111)︸ ︷︷ ︸
c1

ξ3 +(b1001−b0002)︸ ︷︷ ︸
d1

ξ4}

∂x
∂ξ2

= 2{(b1100−b1001)︸ ︷︷ ︸
a2

ξ1 +(b0200−b0101)︸ ︷︷ ︸
b2

ξ2

+(b0110−b0011)︸ ︷︷ ︸
c2

ξ3 +(b0101−b0002)︸ ︷︷ ︸
d2

ξ4}

∂x
∂ξ3

= 2{(b1000−b1001)︸ ︷︷ ︸
a3

ξ1 +(b0110−b0101)︸ ︷︷ ︸
b3

ξ2

+(b0110−b0020)︸ ︷︷ ︸
c3

ξ3 +(b0011−b0002)︸ ︷︷ ︸
d3

ξ4}

The determinant of Jacobian is a cubic Bernstein poly-
nomial and the coefficientsC|i| andc|i| are listed in Table 2.
ai ,bi ,ci anddi are the vectors defined by the corresponding
control points shown in Eq. 6.

Table 2 C|i| andc|i| for det(J) of a quadratic tetrahedral region

|i| C|i| c|i|
3000 8 (a1×a2) ·a3
0300 8 (b1×b2) ·b3
0030 8 (c1×c2) ·c3
0003 8 (d1×d2) ·d3
2100 8 (a1×b2 +a2×b1) ·a3
1200 8 (a1×b2 +a2×b1) ·b3

... ... ...

The convex hull property of B́ezier polynomial indicated
that the polynomial is bounded by its minimal and maximal
control points [14]. So,

min(c|i|) ≤ det(J) ≤ max(c|i|) (8)
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Fig. 3 The computation of det(J) indicates that the mesh entities
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Therefore, a curved tetrahedral region is valid in its clo-
sure as long as itsmin(c|i|) > 0.

2.3 Effective Procedure to Generate Valid Curvilinear
Meshes

The mesh curving procedure can start with a straight-sided
mesh and an existing curved mesh with invalid elements. In
the case that a straight-sided mesh is given, the procedure
computes the B́ezier control points for the mesh edges/faces
on curved domain boundaries and curves them incremen-
tally. For a given curved mesh with different representation
higher order shapes, for example, Lagrange interpolation,
the shapes are converted to Bézier form and the invalid el-
ements are detected and corrected incrementally. Central to
both of the approaches is the selection of effective local mesh
modification operations to eliminate the invalid elements till
the resulting curvilinear meshes are valid.

The computation of the determinant of Jacobian to de-
tect invalid elements can provide useful information to de-
termine key mesh entities and appropriate operations to cor-
rect the invalidity. The invalid elements are defined as those
curved elements having at least one negative coefficients,
c|i| ≤ 0, as shown in Eq. 5. The key mesh entities are de-
fined as those whose control points appear in the compu-
tation of the negative coefficientsc|i|. As an example, Fig-
ure 3 shows an invalid quadratic tetrahedral region and the
computation of the determinant Jacobian shows that coeffi-
cientc3000< 0. Based on Eq.8 and Table 2, the control points
b2000,b1100,b1010 andb1001 have been used to compute the
c3000 which indicates thatM0

0,M1
0,M1

1 andM1
2 are key mesh

entities and applying local mesh modifications on any of
them can effectively makec3000 positive and the curved ele-
ment valid.

The set of curved local mesh modifications applied to
create valid curvilinear meshes include edge split, edge swap,
edge collapse, region collapse, double split+collapse, and
edge re-shape as shown in Figure 4 [9]. Comparing to the
straight-sided mesh, the validity check algorithm discussed
in Section 2.2 is used to determine whether a curved local
mesh modification operation can be applied. Those opera-

tions are essential to ensure the reliability of the mesh curv-
ing procedure to create valid curved elements.

The procedure processes one curved mesh entity at a
time as follows [8]:

– Determine the key mesh entities to apply local mesh op-
erations based on the negative coefficients,c|i| ≤ 0, in
computing the determinant of Jacobian.

– Determine if the invalidity is caused by pairs of neigh-
boring mesh faces or edges classified on the boundary
such that angles of 1800 are created. In those cases,c|i| ≤
0 only happens ati, j,k, l = r. Apply either split (see Fig-
ure 4(a)) or swap operations (see Figure 4(b)) to intro-
duce additional entities to subdivide those larger angles
and correct the invalid curved element.

– Determine if the invalidity is caused by pairs of opposite
mesh edges coming too close to each other in one curved
region, wherec|i| ≤ 0 happens ati, j,k, l 6= r. Apply ei-
ther region split (see Figure 4(d)) or split+collapse (see
Figure 4(e)) to remove the invalid curved element.

– If neither of above two steps is successful, examine the
applications of the remaining operations (see Figure 4(c),
4(f)) to correct the invalid curved elements.

– If the invalid curved element can not be corrected using
those local mesh operations, refinement is applied and
all new invalid curved mesh entities will be added to the
list to be processed. Subdivision creates more options for
applying operations later.

Figure 5 shows the straight-sided and curved mesh for a
3D curved model to demonstrate the effectiveness of the de-
veloped procedure. The mesh has 139 regions and 31 curved
regions are invalid. 20 local mesh modifications are applied
to correct those invalid elements. Curved meshes for more
complex domains used by SLAC for electromagnetic linear
accelerator analysis are shown in section 4.

3 Moving Curved Mesh Adaptation in 3D Curved
Domains

The developed size driven mesh adaptation procedure [10]
has been successfully applied in cardiovascular blood flow
simulations [15], metal forming process [16], wave propa-
gation simulations [17], etc. where the results demonstrated
substantial computational efficiency can be improved using
the isotropic or anisotropic adapted meshes to effectively re-
solve solution fields. The procedure has been extended to
deal with curved meshes for higher order finite elements
in large-scale simulations. The extended procedure main-
tains the existing functionalities developed for straight-sided
meshes such as vertex-based size field specifications and se-
lective local mesh modification applications [10]. In addi-
tion, the following two steps have been added in the case
that the mesh is curved.

– The validity check algorithm described in Section 2.2
must be applied when the affecting cavities for a local
mesh modification operation have curved mesh entities.
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Fig. 4 3D curved local mesh modification operations

Fig. 5 Straight-sided mesh (left) and curved mesh (right) for a 3D
curved domain
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Fig. 6 Before (left) and after (right) refine a quadratic curved mesh
edgeM1

0 on model edgeG1
0. New mesh edgesM1

1,M1
2 have been ap-

propriately curved to the model boundaries

This step ensures that resulting curved meshes are valid
after applying the selected local mesh operation.

– Any newly created mesh entities on the curved domain
boundaries must be properly curved to the model bound-
aries which ensures that the geometric approximation
of the resulting adapted meshes is maintained. As an
example, Figure 6 shows how the procedure to split a
quadratic curved mesh edgeM1

0 which is classified on
the curved model edgeG1

0. The two newly created mesh
edgesM1

1 andM1
2 are also curved to the model edgeG1

0.

In size driven mesh adaptation procedure, a mesh metric
field, which can be either isotropic or anisotropic, is defined
to specify the desired size of elements. The metric field is
used to compute the edge length and directions of the cur-
rent mesh with respect to this metric. A series of controlled
mesh modification steps are applied to obtain a new mesh
that satisfies the specified mesh metric field which consist of
the following three steps [11]:

– Coarsening stage to eliminate the mesh edges that are
shorter than the desired edge length in the metric field.
This stage is accomplished by applying collapse opera-
tion on the identified shorter edges one at a time.

– Refinement stage to reduce the maximal mesh edge length
to reach the desired edge length in the metric field. Edge-
based refinement templates and application of local mesh
modification to project the new created mesh vertices
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to the curved boundaries are iteratively applied until the
adapted mesh satisfies the mesh size metric field require-
ments [10].

– Shape improvement stage to improve the quality of the
resulting mesh using swap and/or vertex reposition oper-
ations.

For large-scale adaptive simulations, discretization error
estimation is applied to construct size fields to control the
mesh adaptation [15–17] in which the adapted meshes can
conform to the size requirements. However, there are cer-
tain situations where other factors may also be applied to
set the size field. For example, the size information being
given for the short-range wakefield simulations performed
by SLAC is supplemented to have a refined mesh in areas
where beams currently reside. The specification of this re-
finement information is dictated by the initial locations of
the beam and the desired mesh size around the beam which
is often at least one order of magnitude smaller than the rest
of the domains. The larger size difference between the finer
beam domain and the coarse domain can lead to bad qual-
ity resulting meshes. The left mesh in Figure 7 shows an
adapted curved mesh which uses size 1 and 10 to control
the fine and coarse mesh in the model. The abrupt size field
change causes meshes at the fine and coarse mesh interface
not acceptable which clearly demonstrated that the control
of the mesh gradation is needed.

Fig. 7 Curved meshes without (left) and with (right) mesh size grada-
tion control

The procedure described in [18] is adopted to control a
smooth mesh size transition over the mesh. Central to the
algorithm is that the ratio between the larger mesh size to
the smaller mesh size at the two bounding mesh vertices of
any mesh edge is under a prescribed factorβ , whereβ > 1.

LetM1
i be a mesh edge,M0

j1
andM0

j2
are its two bounding

mesh vertices, the given mesh sizes at each vertex areh j1
and h j2 which represent the desired edge lengths at those
two vertices. We require that,

max{
h j1

h j2
,
h j2

h j1
}

1
L(M1

1) ≤ β (9)

whereL(M1
1) represents the length of the mesh edgeM1

i with
respect to the mesh size field as defined as,

L(M1
1) = ||M1

i ||
∫ 1

0

1
H(t)

dt (10)

where||M1
i || denotes the length of the mesh edge andH(t)

is a monotonic interpolation function along the mesh edge
such thatH(0) = h j1 andH(1) = h j2. For the piecewise lin-
ear mesh size field used in this paper to track the moving
mesh adaptation in curved domains, the functionH(t) is,

H(t) = h j1 +(h j2 −h j1)t (11)

Therefore, Eq.10 gives,

L(M1
1) = ||M1

i ||
log(h j1/h j2)

h j1 −h j2
,h j1 6= h j2 (12)

Therefore, for any mesh edge which is not satisfied in Eq.9,
the larger mesh size of its bounding mesh vertices is de-
creased tomin(h j1,h j2)β

L(M1
i ) to meet Eq.9. The process is

iteratively performed over the mesh when all of the mesh
edges satisfy Eq.9. For the mesh shown in Figure 7(b),β

is adopted as 2.0. More moving adaptive curved meshes are
shown in section 4.

4 Analysis Results

4.1 Finite-Element Time-Domain Method for
Electromagnetics

A brief introduction of finite-element time-domain (FETD)
method for electromagnetic simulation is given in this sec-
tion. Ampere’s and Faraday’s laws along with constitutive
relations yield the inhomogeneous vector wave equation for
the electric field,

∇×
(

1
µ

∇×E
)

+ ε
∂ 2

∂ t2 E = − ∂

∂ t
J (13)

To avoid time differentiation of electric current densityJ, it
can be integrated in time to obtain the following equation,

∇×
(

1
µ

∇×
∫ t

−∞
Edτ

)
+ ε

∂ 2

∂ t2

∫ t

−∞
Edτ = −J (14)

whereE is the electric field intensity,J is the electric cur-
rent density, andε and µ are the electric permittivity and
magnetic permeability.

With finite-element spacial discretization,
∫ t
−∞ Edτ in Eq.

14 is expanded by a set of hierarchical Nedelec [19] basis
functionsNi(x),∫ t

−∞
E(x,τ)dτ = ∑

i
ei(t) ·Ni(x) (15)
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The vector wave equation is discretized to a set of second-
order ordinary differential algebraic equations,

M
d2e
dt2

+Ke = f (16)

where matricesM , K , and vectorf are,

M i j =
∫

Ω

εNi ·N jdΩ (17)

K i j =
∫

Ω

1
µ

(∇×Ni) · (∇×N j)dΩ (18)

f i =
∫

Ω

Ni ·JdΩ (19)

The Newmark-beta scheme, which is unconditionally sta-
ble when beta is larger than or equal to 0.25, is used to ap-
proximate the above second-order differential equations of
field Eq. (16). The resulting implicit time marching scheme
is given as follows,(
M +β (∆ t)2K

)
en+1 =

(
2M − (1−2β )(∆ t)2K

)
en

−
(
M +β (∆ t)2K

)
en−1− (∆ t)2(

β fn+1 +(1−2β )fn +β fn−1)
(20)

Note that the electric fieldE and the magnetic flux den-
sity B are then easily obtained from the solution vectore,

E(x) = ∑i ∂teiNi(x) (21)

B(x) = −∑i ei∇×Ni(x) (22)

4.2 Valid Curvilinear Meshes for FETD Electromagnetic
Simulations

SLAC performs simulations for the wakefield effects of an
8-cavity cryomodule for the proposed International Linear
Collider (ILC) using the FETD method, which applies a set
of higher order hierarchical Nedelec basis functions [19]
for the finite element spacial discretization that requires the
meshes to be curved. A curvilinear mesh with 2.974 mil-
lion quadratic isoparametric tetrahedral elements is used in
this FETD simulation. The initial curvilinear mesh uses La-
grange interpolation to represent the higher order shapes for
those curved mesh edges which have been converted to Bézeir
representations using Eq.2. 515 invalid curved elements were
detected and have been corrected using the procedure dis-
cussed in Section 2. The valid curved mesh was exported by
converting the B́ezier shapes back to Lagrange shapes to be
suitable for the analysis simulation system. Figure 8 shows
the curved mesh for one cavity of the model and the close-up
mesh before and after curving. Figure 9 shows how an edge
collapse operation is applied to correct an invalid curved el-
ement during curving process.

The mesh produced about 20 million degrees of free-
dom. The simulation used 256 Multi-stream processors on
the Cray-X1E at Oak Ridge National Laboratory. It took a
total runtime of 300 wall-hours through multiple jobs with
checkpointing for a complete run and half terabtye of data

Fig. 8 The mesh for one cavity (top), close-up mesh before (bottom
left) and after (bottom right) correcting the invalid curved elements
marked as yellow

Fig. 9 Local mesh cavity before (left) and after (right) applying edge
swap to correct the invalid element

Fig. 10 A snapshot of the electric field distribution excited by a beam
in an 8-cavity cryomodule for the proposed International Linear Col-
lider

was generated. Figure 10 shows a snapshot of the electric
field distribution excited by a beam in the ILC cryomodule.

The statistics for correcting the invalid curved regions
is presented in Table 3. The data shows that the procedure
used about 10 minutes to correct the invalid regions on a sin-
gle processor Linux workstation. The corrected curvilinear
mesh not only leads to a stable time-domain simulation but
also reduces the execution time per time-step by up to 30%
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Table 3 Statistics for correcting the 2.97M mesh with 515 invalid
curved regions

Time usage (sec)
Import the mesh 381.162

Create invalid region list 45.106
Correcting invalid regions 256.182

Export the mesh 64.911
Local mesh operations

Edge collapse 253
Region collapse 17

Edge swap 76
Double edge split+collapse 13

Recurving 32

due to better conditioned matrices, which is 90 wall-hours
runtime efficiency improvement on the parallel computers.

4.3 Moving Curved Mesh Refinements for Short-range
Wakefield Calculations

A series of moving adapted meshes in a curved domain were
generated using the procedure described in Section 3 for
short-range wakefield calculations by SLAC. Figure 11 shows
the geometric model which has some complex components
in the middle of domain. The initial location of the beam is
at the left end of the domain, the desired mesh size inside
beam region is 1 and the size for the rest of the domains is
10. Figure 12 shows the moving adapted curvilinear meshes
up to step 5. Figure 13 shows the interior adapted mesh at
step 5. Mesh size gradation control discussed in Section 3 is
applied withβ = 2.0. Figure 15 shows the number of ele-
ments at each step which indicates that these adaptively re-
fined meshes have around 1∼ 1.15 million elements com-
pared to the uniform refined mesh with 6.5 million elements
if the mesh size inside the beam domain is applied in the en-
tire domain. The increase of the number of elements in the
middle of the domain is due to the complex geometries as
shown in Figure 11. Figure 14 shows the short-range wake-
filed simulation using the moving curved adapted meshes.
The results show a tenfold reduction in execution time and
memory usage without loss in accuracy comparing to uni-
formly refined meshes.

5 Conclusion

This paper has presented a procedure to track moving adap-
tive mesh refinement in curved domains which is capable of
generating suitable curvilinear meshes to enable large-scale
accelerator simulations. The procedure combined a general
mesh curving tool and size-driven mesh adaptation to pro-
duce valid curved meshes with substantially fewer elements
and the analysis results demonstrated such meshes improved
the computational efficiency and reliability. Future work will
focus on the scalable parallelization of all steps for petascale
simulations.

80

Fig. 11 Geometric model for the short-range wakefield simulation
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